Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Andrei S. Batsanov,* Paul J. Low and Michael A. J. Paterson

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.047$
$w R$ factor $=0.140$
Data-to-parameter ratio $=21.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 4,4'-Diamino-2,2',6,6'-tetramethylbiphenyl

Each of the three independent molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}$, has near-perpendicular benzene rings and pyramidal N atoms. Hydrogen bonding in the structure is rather inefficient.

## Comment

Benzidine derivatives are now widely used in the solid state as hole-injecting and transport materials in applications ranging from the Xerox process to organic light-emitting diodes (OLEDs) (Thelakkat, 2002). As noted by Shankland et al. (2005), the solid-state structures of these materials are of more than simply crystallographic interest, with the physical structure playing a critical role in determining the mechanism and energetics of the charge transport process. In the course of a wider study of tetra(aryl)benzidines (Littleford et al., 2004; Low, Paterson, Goeta et al., 2004; Low, Paterson, Puschmann et al., 2004; Low et al., 2005) we have determined the structure of 4,4'-diamino-2, $2^{\prime}, 6,6^{\prime}$-tetramethylbiphenyl, (I), reported here.

(I)

The asymmetric unit of (I) comprises three molecules (Fig. 1), which adopt twisted conformations due to steric repulsion between methyl groups. The intramolecular dihedral angle between benzene rings is 84.51 (4), 86.38 (3) and $80.46(4)^{\circ}$, similar to $86^{\circ}$ in $m$-toluidine (Fowweather, 1952), $86^{\circ}$ in 2,2',6,6'tetra(mercapto)-4,4-diaminobiphenyl and $90^{\circ}$ in $2,2^{\prime}, 6,6^{\prime}$-tetra(ethylthio)-4,4-diaminobiphenyl (ZhuOhlbach et al., 1998). The unsubstituted benzidine molecule (in various cocrystals) was found to be either planar (Ermer \& Eling, 1994) or twisted by ca $40^{\circ}$ (Giastas et al., 2003).

All N atoms in (I) have substantially pyramidal geometry with a mean bond angle of $113(1)^{\circ}$, and are nearly coplanar with the attached rings, except atoms N 1 and N 4 , which are displaced from these planes by 0.102 (2) and 0.129 (2) $\AA$, respectively. The degree of pyramidalization is similar to that observed in solid aniline (Fukuyo et al., 1982); the mean $\mathrm{N}-\mathrm{C}$ bond distance of 1.410 (3) $\AA$ in (I) is marginally longer than in aniline $[1.392$ (6) Å].

The most peculiar feature of the structure is the inefficiency of hydrogen bonding. While the asymmetric unit contains 12

Received 31 May 2006
Accepted 14 June 2006

Figure 1
The asymmetric unit of (I), showing atomic displacement ellipsoids at the $50 \%$ probability level. Dashed lines represent hydrogen bonds.
polar H atoms and six potential acceptor sites (nitrogen lone pairs), there are only four definite $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2). The $\mathrm{N} 2-\mathrm{H} 2 A$ bond points towards the centroid, $X$, of the C41-C46 benzene ring at the symmetry position $(-x$, $1-y,-z)\left[\mathrm{H} \cdots X=2.49(2) \AA\right.$ and $\mathrm{N}-\mathrm{H} \cdots X=173$ (2) $\left.{ }^{\circ}\right]$, and the $\mathrm{N} 2-\mathrm{H} 2 B$ bond towards the C 36 atom generated by the translation $(x+1, y, z)[\mathrm{H} \cdots \mathrm{C}=2.745$ (18) $\AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{C}=$ $\left.150.4(14)^{\circ}\right]$. The latter two contacts may be regarded as weak hydrogen bonds (Desiraju \& Steiner, 1999). The remaining amino atoms $\mathrm{H} 1 B, \mathrm{H} 3 A, \mathrm{H} 4 B, \mathrm{H} 5 A, \mathrm{H} 5 B$ and $\mathrm{H} 6 A$ form no hydrogen bonds of any kind, contacting only with methyl- or phenyl-group H atoms. Probably, the rigidity of the molecular rods prevents more efficient hydrogen bonding.

## Experimental

Compound (I) was prepared according to Carlin (1945) and recrystallized from benzene and hexane (1:1).

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=240.34$
Monoclinic, $P 2_{2} / c$
$a=11.393(2) \AA$
$b=16.523(3) \AA$
$c=22.487(3) \AA$
$\beta=99.96(1)^{\circ}$
$V=4169.3(12) \AA^{3}$

## Data collection

Bruker SMART 6K CCD areadetector diffractometer
$\omega$ scans
Absorption correction: none
76630 measured reflections

## Refinement

[^1]Table 1
Selected bond lengths ( A ).

| N1-C11 | $1.4101(16)$ | N6-C61 | $1.4097(16)$ |
| :--- | :--- | :--- | :--- |
| N2-C21 | $1.4120(15)$ | C14-C24 | $1.5002(15)$ |
| N3-C31 | $1.4091(14)$ | C34-C44 | $1.4974(14)$ |
| N4-C41 | $1.4055(14)$ | C54-C64 | $1.4970(16)$ |
| N5-C51 | $1.4141(17)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N1-H1A $\cdots \mathrm{N} 6$ | $0.95(2)$ | $2.18(2)$ | $3.1291(19)$ | $175.1(16)$ |
| N2-H2B $\cdots$ C36 | $0.915(18)$ | $2.745(18)$ | $3.5699(17)$ | $150.4(14)$ |
| N3-H3B $\cdots \mathrm{N} 4^{\text {ii }}$ | $0.901(19)$ | $2.426(19)$ | $3.3052(18)$ | $165.1(15)$ |
| N4-H4A 2 N 2 | $0.93(2)$ | $2.31(2)$ | $3.1585(16)$ | $150.3(16)$ |
| N6-H6B $\cdots \mathrm{N} 3^{\text {iii }}$ | $0.931(19)$ | $2.19(2)$ | $3.1035(18)$ | $168.9(16)$ |

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
Amino H atoms were located in a difference map and were refined isotropically $[\mathrm{N}-\mathrm{H}=0.86(2)-0.95(3) \AA]$. Methyl groups were refined as rigid bodies $[\mathrm{C}-\mathrm{H}=0.98 \AA$ ] rotating around the $\mathrm{C}-\mathrm{C}$ bonds, with a common refined $U_{\text {iso }}$ value for the three H atoms; the benzene H atoms were treated as riding on the C atoms $[\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Department of Chemistry (Durham University) and the EPSRC for financial support of this work. MAJP held a doctoral scholarship under the EPSRC's CASE for New Academics (PJL) in conjunction with Avecia Ltd.

## References

Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Carlin, R. B. (1945). J. Am. Chem. Soc. 67, 928-933.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.

## organic papers

Ermer, O. \& Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925-944. Fowweather, F. (1952). Acta Cryst. 5, 820-825.
Fukuyo, M., Hirotsu, K. \& Higuchi, T. (1982). Acta Cryst. B38, 640-643.
Giastas, P., Yannakopoulou, K. \& Mavridis, I. M. (2003). Acta Cryst. B59, 287299.

Littleford, R. E., Paterson, M. A. J., Low, P. J., Tackley, D. R., Jayes, L., Dent, G., Cherryman, J. C. \& Smith, W. E. (2004). Phys. Chem. Chem. Phys. 6, 3257-3263.
Low, P. J., Paterson, M. A. J., Goeta, A. E., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R. \& Brown, B. (2004). J. Mater. Chem. 14, 2516-2523.

Low, P. J., Paterson, M. A. J., Puschmann, H., Goeta, A. E., Howard, J. A. K., Lambert, C., Cherryman, J. C., Tackley, D. R., Leeming, S. \& Brown, B. (2004). Chem. Eur. J. 10, 83-91.

Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brook, R. \& Brown, B. (2005). J. Mater. Chem. 15, 2304 2315.

Shankland, K., Kennedy, A. R. \& David, W. I. F. (2005). J. Mater. Chem. 15, 4838-4844.
Thelakkat, M. (2002). Macromol. Mater. Eng. 287, 442-461.
Zhu-Ohlbach, O., Gleiter, R., Rominger, F., Schmidt, H.-L. \& Reda, T. (1998). Eur. J. Org. Chem. pp. 2409-2416.


[^0]:    © 2006 International Union of Crystallography All rights reserved

[^1]:    Refinement on $F^{2}$
    $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
    $w R\left(F^{2}\right)=0.140$
    $S=1.02$
    12148 reflections
    559 parameters
    H atoms treated by a mixture of independent and constrained refinement

